Rules for Jeopardy

- 1. You will have 40 Minutes to solve as many problems as possible.
- 2. Once you have answered EACH question, you will come up to Mr. Doucette and he will identify whether you have a correct or incorrect solution. If the solution is correct, you will earn the dollar value on the Question.
- 3. Each questions Dollar value is based on the difficulty of the problem. More difficult problems are worth \$500, easier questions \$100.
- 4. At the end of the 40 minutes points will be tallied. Then we will go the final Jeopardy period, where you can wager the points you earned, on a final question.
- Important Rules:
- YOU MUST ANSWER AT LEAST 1 QUESTION FROM EACH CATEGORY.
- YOU MUST ANSWER AT LEAST 2 \$500 Questions.

Jeopardy

Operations Of Functions	Inverses	Compositions	Properties Of Radicals	Graphing
<u>Q \$100</u>	<u>Q \$100</u>	<u>Q \$100</u>	<u>Q \$100</u>	<u>Q \$100</u>
Q \$200	Q \$200	Q \$200	Q \$200	<u>Q \$200</u>
Q \$300	Q \$300	<u>Q \$300</u>	<u>Q \$300</u>	Q \$300
Q \$400	<u>Q \$400</u>	<u>Q \$400</u>	<u>Q \$400</u>	Q \$400
Q \$500	Q \$500	<u>Q \$500</u>	Q \$500	Q \$500

Final Jeopardy

\$100 Question from *Operations of Functions*

Find
$$f(x) - g(x)$$

for
$$f(x) = -3x^2 + 4x - 1$$

 $g(x) = x^2 - x + 8$

\$200 Question from *Operations of Functions*

$$find f(x) + g(x)$$

$$for f(x) = -3x^2 + 4x - 1$$

$$g(x) = x^2 - x + 8$$

\$300 Question from *Operations of Functions*

$$f(x) = -3x^3 + 5x^2$$

$$g(x) = 2x - 2$$
Find $f(x) + g(x)$

\$400 Question from *Operations of Functions*

$$f(x) = x + 2$$

$$g(x) = 2x^2 - 1 + 2x$$
Find $f(x) - g(x)$

\$500 Question from *Operations of Functions*

$$f(x) = 4x + 3$$

 $g(x) = 4x + 2$
Find $f(-10) + g(-10)$

\$100 Question from *Inverses*

Find the inverse of each function.

$$f(x) = \sqrt[3]{x-1}$$

\$200 Question from *Inverses*

Find the inverse of each function.

$$g(x) = (x-1)^3 + 3$$

\$300 Question from *Inverses*

State whether the given functions are inverses.

$$f(n) = n - 2$$
$$g(n) = \frac{6 + n}{3}$$

\$400 Question from *Inverses*

Find the inverse of each function.

$$g(x) = \sqrt[5]{\frac{x+3}{2}}$$

\$500 Question from *Inverses*

State whether the given functions are inverses

$$g(x) = 1 - x^3$$

 $f(x) = 2 + (x - 2)^5$

\$100 Question from *Compositions*

Given
$$f(x) = -2x - 7$$
 and $g(x) = -x^2 + 5$, find $f(g(1))$

\$200 Question from *Compositions*

Given
$$f(x) = -2x - 7$$
 and $g(x) = -x^2 + 5$, $g(f(1))$.

\$300 Question from *Compositions*

$$f(n) = -2n + 1$$

Find $f(f(-4))$

\$400 Question from *Compositions*

$$g(a) = 4a$$

$$h(a) = 3a + 4$$
Find $g(h(4))$

\$500 Question from *Compositions*

$$g(x) = 4x + 1$$

$$h(x) = -2x - 5$$
Find $g(h(x))$

\$100 Question from *Properties of Radicals*

Simplify

$$-8\sqrt{12p^3q^2r^4}$$

\$200 Question from *Properties of Radicals*

Simplify

$$-4\sqrt[4]{486n^2}$$

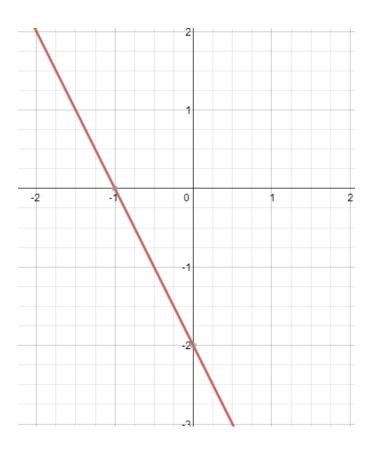
\$300 Question from *Properties of Radicals*

Simplify:
$$\sqrt{4x^7y^5} + 9x^2\sqrt{x^3y^5} - 5xy\sqrt{x^5y^3}$$

\$400 Question from *Properties of Radicals*

Simplify

$$\sqrt[4]{128a^{12}b^{17}}$$


\$500 Question from *Properties of Radicals*

Simplify

$$\sqrt[3]{128r^6s^2}$$

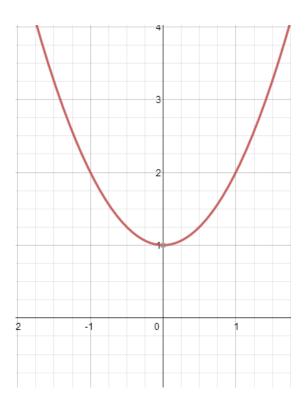
\$100 Question from *Graphing and Solving*

• Write the inverse function of the graphed line.

\$200 Question from *Graphing and Solving*

Solve
$$\sqrt{x+4}=3$$

\$300 Question from *Graphing and Solving*


Solve
$$\sqrt[3]{\frac{x}{4}} = 5$$

\$400 Question from *Graphing and Solving*

Solve:
$$\sqrt{5x+9} - 10 = 12$$

\$500 Question from *Graphing and Solving*

• Write the inverse function of the graphed quadratic.

Final Jeopardy

\$100 Answer from Operations of Functions

\$200 Answer from Operations of Functions

\$300 Answer from Operations of Functions

\$400 Answer from Operations of Functions

\$500 Answer from Operations of Functions

\$100 Answer from Inverses

\$200 Answer from Inverses

\$300 Answer from Inverses

\$400 Answer from Inverses

\$500 Answer from Inverses

\$100 Answer from Compositions

\$200 Answer from Compositions

\$300 Answer from Compositions

\$400 Answer from Compositions

\$500 Answer from Compositions

\$100 Answer from Properties of Radicals

\$200 Answer from Properties of Radicals

\$300 Answer from Properties of Radicals

\$400 Answer from Properties of Radicals

\$500 Answer from Properties of Radicals

\$100 Answer from Graphing

Jeopardy

\$200 Answer from Graphing

\$300 Answer from Graphing

\$400 Answer from Graphing

\$500 Answer from Graphing

Final Jeopardy Answer

Jeopardy